
Regular ExpressionsRegular Expressions
andand
Finite State AutomataFinite State Automata

IntroductionIntroduction

 Regular expressions are equivalent to Finite State
Automata in recognizing regular languages, the first step
in the Chomsky hierarchy of formal languages

 The term regular expressions is also used to mean the
extended set of string matching expressions used in
many modern languages
◦ Some people use the term regexp to distinguish this use

 Some parts of regexps are just syntactic extensions of
regular expressions and can be implemented as a regular
expression – other parts are significant extensions of the
power of the language and are not equivalent to finite
automata

Concepts and NotationsConcepts and Notations

 Set: An unordered collection of unique elements
S1 = { a, b, c } S2 = { 0, 1, …, 19 } empty set:

membership: x S union: S1 S2 = { a, b, c, 0, 1, …, 19 }
universe of discourse: U subset: S1 U
complement: if U = { a, b, …, z }, then S1' = { d, e, …, z } = U -

S1

 Alphabet: A finite set of symbols
◦ Examples:
 Character sets: ASCII, ISO-8859-1, Unicode
 S1= { a, b } S2 = { Spring, Summer, Autumn, Winter }

 String: A sequence of zero or more symbols from an
alphabet
◦ The empty string: e

Concepts and NotationsConcepts and Notations

 Language: A set of strings over an alphabet
◦ Also known as a formal language; may not bear any

resemblance to a natural language, but could model a subset
of one.

◦ The language comprising all strings over an alphabet is
written as: *

 Graph: A set of nodes (or vertices), some or all of which
may be connected by edges.

◦ An example: – A directed graph example:

1

3

2 a

b

c

Regular ExpressionsRegular Expressions

 A regular expression defines a regular
language over an alphabet :
◦ is a regular language: //
◦ Any symbol from is a regular language:

 = { a, b, c} /a/ /b/ /c/
◦ Two concatenated regular languages is a
regular language:
 = { a, b, c} /ab/ /bc/ /ca/

Regular ExpressionsRegular Expressions

 Regular language (continued):
◦ The union (or disjunction) of two regular
languages is a regular language:
 = { a, b, c} /ab|bc/ /ca|bb/

◦ The Kleene closure (denoted by the Kleene
star: *) of a regular language is a regular
language:
 = { a, b, c} /a*/ /(ab|ca)*/

◦ Parentheses group a sub-language to
override operator precedence (and, we’ll see
later, for “memory”).

Finite AutomataFinite Automata

 Finite State Automaton
a.k.a. Finite Automaton, Finite State Machine, FSA or FSM

◦ An abstract machine which can be used to
implement regular expressions (etc.).
◦ Has a finite number of states, and a finite
amount of memory (i.e., the current state).
◦ Can be represented by directed graphs or
transition tables

FiniteFinite--state Automata state Automata (1/23)(1/23)

 Representation
◦ An FSA may be represented as a directed graph;

each node (or vertex) represents a state, and
the edges (or arcs) connecting the nodes
represent transitions.
◦ Each state is labelled.
◦ Each transition is labelled with a symbol from

the alphabet over which the regular language
represented by the FSA is defined, or with e, the
empty string.
◦ Among the FSA’s states, there is a start state

and at least one final state (or accepting state).

FiniteFinite--state Automata state Automata (2/23)(2/23)

q0 q1 q2 q3 q4 = { a, b, c }
a b c a

transition final statestart state

state

• Representation (continued)

– An FSA may also be
represented with a
state-transition table.
The table for the
above FSA:

Input

State a b c

0 1

1 2

2 3
3 4

4

FiniteFinite--state Automata state Automata (3/23)(3/23)

 Given an input string, an FSA will either
accept or reject the input.
◦ If the FSA is in a final (or accepting) state after
all input symbols have been consumed, then
the string is accepted (or recognized).
◦ Otherwise (including the case in which an input
symbol cannot be consumed), the string is
rejected.

FiniteFinite--state Automata state Automata (3/23)(3/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (4/23)(4/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (5/23)(5/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (6/23)(6/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (7/23)(7/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (8/23)(8/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (9/23)(9/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (10/23)(10/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (11/23)(11/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (12/23)(12/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (13/23)(13/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (14/23)(14/23)

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a
Input

State a b c

0 1

1 2

2 3
3 4

4

a b c a

c c b a

a b c a c

IS1:

IS2:

IS3:

FiniteFinite--state Automata state Automata (22/23)(22/23)

 An FSA defines a regular language over
an alphabet :
◦ is a regular language:
◦ Any symbol from is a regular language:

 = { a, b, c}

◦ Two concatenated regular languages is a
regular language:

 = { a, b, c}

q0
b

q0

q1

q0
b q1 q0

c q1

q1
c q2q0

b

FiniteFinite--state Automata state Automata (23/23)(23/23)

 regular language (continued):

◦ The union (or disjunction) of two regular
languages is a regular language:

 = { a, b, c}

◦ The Kleene closure (denoted by the Kleene star:
*) of a regular language is a regular
language:

 = { a, b, c}

q0
b q1 q0

c q1

q2
c q3q0

bq1
e

e

q0
b q1

e

FiniteFinite--state Automata state Automata (15/23)(15/23)

 Determinism
◦ An FSA may be either deterministic (DFSA or
DFA) or non-deterministic (NFSA or NFA).
 An FSA is deterministic if its behavior during
recognition is fully determined by the state it is in
and the symbol to be consumed.
◦ I.e., given an input string, only one path may be taken

through the FSA.
 Conversely, an FSA is non-deterministic if, given an
input string, more than one path may be taken
through the FSA.
◦ One type of non-determinism is e-transitions, i.e.

transitions which consume the empty string (no symbols).

FiniteFinite--state Automata state Automata (16/23)(16/23)

 An example NFA:

q0 q1 q2 q3 q4

 = { a, b, c }

a b c a

e

e

c

State
Input

a b c e

0 1

1 2 2
2 3,4 1

3 4

4

– The above NFA is equivalent to the regular
expression /ab*ca?/.

FiniteFinite--state Automata state Automata (17/23)(17/23)

 String recognition with an NFA:
◦ Backup (or backtracking): remember choice
points and revisit choices upon failure
◦ Look-ahead: choose path based on
foreknowlege about the input string and
available paths
◦ Parallelism: examine all choices simultaneously

FiniteFinite--state Automata state Automata (18/23)(18/23)

 Recognition as search
◦ Recognition can be viewed as selection of
the correct path from all possible paths
through an NFA (this set of paths is called
the state-space)
◦ Search strategy can affect efficiency: in
what order should the paths be searched?
 Depth-first (LIFO [last in, first out]; stack)
 Breadth-first (FIFO [first in, first out]; queue)
 Depth-first uses memory more efficiently, but
may enter into an infinite loop under some
circumstances

FiniteFinite--state Automata state Automata (19/23)(19/23)

 Conversion of NFAs to DFAs
◦ Every NFA can be expressed as a DFA.

/ab*ca?/
q0 q1 q2 q3 q4

 = { a, b, c }
a b c a

e

e

c

State
Input

a b c e

0 1

1 2 2
2 3,4 1

3 4

4F

New
State State

Input
a b c

0' 0 1
1' 1 2 {3,4}
2' 2 2 {3,4}

3'F {3,4}F 4
4'F 4F
5

q0' q1' q2' q3' q4' q5 a,b,ca,b,cacb a b,c

b

a

c

a
b,c

Subset
construction

FiniteFinite--state Automata state Automata (20/23)(20/23)

 DFA minimization
◦ Every regular language has a unique minimum-state DFA.
◦ The basic idea: two states s and t are equivalent if for

every string w, the transitions T(s, w) and T(t, w) are
both either final or non-final.
◦ An algorithm:
 Begin by enumerating all possible pairs of both final or both

non-final states, then iteratively removing those pairs the
transition pair for which (for any symbol) are either not equal
or are not on the list. The list is complete when an iteration
does not remove any pairs from the list.

 The minimum set of states is the partition resulting from the
unions of the remaining members of the list, along with any
original states not on the list.

FiniteFinite--state Automata state Automata (21/23)(21/23)

 The minimum-state DFA for the DFA
converted from the NFA for /ab*ca?/,
without the “failure” state (labeled “5”),
and with the states relabeled to the set
Q = { q0", q1", q2", q3" }:

q0" q1" q2" q3"
acb

a

Finite Automata with OutputFinite Automata with Output

 Finite Automata may also have an output
alphabet and an action at every state
that may output an item from the
alphabet

 Useful for lexical analyzers
◦ As the FSA recognizes a token, it outputs the
characters
◦ When the FSA reaches a final state and the
token is complete, the lexical analyzer can use
 Token value – output so far
 Token type – label of the output state

RegExpsRegExps

◦ The extended use of regular expressions is in many
modern languages:
 Perl, php, Java, python, …

◦ Can use regexps to specify the rules for any set of
possible strings you want to match
 Sentences, e-mail addresses, ads, dialogs, etc

◦ ``Does this string match the pattern?'', or ``Is there a
match for the pattern anywhere in this string?''
◦ Can also define operations to do something with the

matched string, such as extract the text or substitute for
it
◦ Regular expression patterns are compiled into a

executable code within the language

Regular ExpressionsRegular Expressions

 Regexp syntax is a superset of the
notation required to express a regular
language.
◦ Some examples and shortcuts:

1. /[abc]/ = /a|b|c/ Character class; disjunction
2. /[b-e]/ = /b|c|d|e/ Range in a character class
3. /[\012\015]/ = /\n|\r/ Octal characters; special

escapes
4. /./ = /[\x00-\xFF]/ Wildcard; hexadecimal

characters
5. /[^b-e]/ = /[\x00-af-\xFF]/ Complement of character class
6. /a*/ /[af]*/ /(abc)*/ Kleene star: zero or more
7. /a?/ = /a|/ /(ab|ca)?/ Zero or one
8. /a+/ /([a-zA-Z]1|ca)+/ Kleene plus: one or more
9. /a{8}/ /b{1,2}/ /c{3,}/ Counters: exact repeat

quantification

Regular ExpressionsRegular Expressions

 Anchors
◦ Constrain the position(s) at which a pattern
may match
◦ Think of them as “extra” alphabet symbols,
though they actually consume e (the zero-
length string):

◦ /^a/ Pattern must match at beginning of string
◦ /a$/ Pattern must match at end of string
◦ /\bword23\b/ “Word” boundary: /[a-zA-Z0-9_][^a-zA-Z0-
9_]/

or /[^a-zA-Z0-9_][a-zA-Z0-
9_]/

◦ /\B23\B/ “Word” non-boundary

Regular ExpressionsRegular Expressions
 Escapes

◦ A backslash “\” placed before a character is said to
“escape” (or “quote”) the character. There are six
classes of escapes:
1. Numeric character representation: the octal or

hexadecimal position in a character set: “\012” =
“\xA”

2. Meta-characters: The characters which are
syntactically meaningful to regular expressions, and
therefore must be escaped in order to represent
themselves in the alphabet of the regular expression:
“[](){}|^$.?+*\” (note the inclusion of the
backslash).

3. “Special” escapes (from the “C” language):
newline: “\n” = “\xA” carriage return: “\r” = “\xD”
tab:“\t” = “\x9” formfeed: “\f” = “\xC”

Regular ExpressionsRegular Expressions
 Escapes (continued)

◦ Classes of escapes (continued):

4. Aliases: shortcuts for commonly used character classes.
(Note that the capitalized version of these aliases refer to
the complement of the alias’s character class):
◦ whitespace: “\s” = “[\t\r\n\f\v]”
◦ digit: “\d” = “[0-9]”
◦ word: “\w” = “[a-zA-Z0-9_]”
◦ non-whitespace: “\S” = “[^ \t\r\n\f]”
◦ non-digit: “\D” = “[^0-9]”
◦ non-word: “\W” = “[^a-zA-Z0-9_]”

5. Memory/registers/back-references: “\1”, “\2”, etc.
6. Self-escapes: any character other than those which

have special meaning can be escaped, but the escaping
has no effect: the character still represents the regular
language of the character itself.

Regular ExpressionsRegular Expressions

 Memory/Registers/Back-references
◦ Many regular expression languages include a
memory/register/back-reference feature, in
which sub-matches may be referred to later in
the regular expression, and/or when
performing replacement, in the replacement
string:
 Perl: /(\w+)\s+\1\b/ matches a repeated word
 Python: re.sub(”(the\s+)the(\s+|\b)”,”\1”,string)

removes the second of a pair of ‘the’s
◦ Note: finite automata cannot be used to
implement the memory feature.

Regular Expression Examples

Character classes and Kleene symbols
[A-Z] = one capital letter
[0-9] = one numerical digit
[st@!9] = s, t, @, ! or 9
[A-Z] matches G or W or E

does not match GW or FA or h or fun
[A-Z]+ = one or more consecutive capital letters

matches GW or FA or CRASH
[A-Z]? = zero or one capital letter
[A-Z]* = zero, one or more consecutive capital letters

matches on eat or EAT or I
so, [A-Z]ate

matches Gate, Late, Pate, Fate, but not
GATE or gate

and [A-Z]+ate
matches: Gate, GRate, HEate, but not Grate or

grate or STATE
and [A-Z]*ate

matches: Gate, GRate, and ate, but not STATE,
grate or Plate

Regular Expression ExamplesRegular Expression Examples (cont’d)(cont’d)

[A-Za-z] = any single letter
so [A-Za-z]+

matches on any word composed of only letters,
but will not match on “words”: bi-weekly , yes@SU

or IBM325

they will match on bi, weekly, yes, SU and IBM

a shortcut for [A-Za-z] is \w, which in Perl also includes
_

so (\w)+ will match on Information, ZANY, rattskellar
and jeuvbaew

\s will match whitespace
so (\w)+(\s)(\w+) will match real estate or Gen

Xers

Regular Expression ExamplesRegular Expression Examples (cont’d)(cont’d)

Some longer examples:

([A-Z][a-z]+)\s([a-z0-9]+)
matches: Intel c09yt745 but not IBM series5000

[A-Z]\w+\s\w+\s\w+[!]
matches: The dog died!

It also matches that portion of “ he said, “ The
dog died! “

[A-Z]\w+\s\w+\s\w+[!]$
matches: The dog died!
But does not match “he said, “ The dog died! “
because the $ indicates end of Line, and there is a
quotation mark before the end of the line

(\w+ats?\s)+
parentheses define a pattern as a unit, so the above
expression will match:
Fat cats eat Bats that Splat

Regular Expression ExamplesRegular Expression Examples (cont’d)(cont’d)

To match on part of speech tagged data:
(\w+[-]?\w+\|[A-Z]+) will match on:

bi-weekly|RB
camera|NN
announced|VBD

(\w+\|V[A-Z]+) will match on:
ruined|VBD
singing|VBG
Plant|VB
says|VBZ

(\w+\|VB[DN]) will match on:
coddled|VBN
Rained|VBD
But not changing|VBG

Regular Expression ExamplesRegular Expression Examples (cont’d)(cont’d)

Phrase matching:

a\|DT ([a-z]+\|JJ[SR]?) (\w+\|N[NPS]+)

matches: a|DT loud|JJ noise|NN
a|DT better|JJR Cheerios|NNPS

(\w+\|DT) (\w+\|VB[DNG])* (\w+\|N[NPS]+)+
matches: the|DT singing|VBG elephant|NN seals|NNS

an|DT apple|NN
an|DT IBM|NP computer|NN
the|DT outdated|VBD aging|VBG

Commodore|NNNP computer|NN
hardware|NN

ConclusionConclusion

 Both regular expressions and finite-state
automata represent regular languages.

 The basic regular expression operations are:
concatenation, union/disjunction, and Kleene
closure.

 The regular expression language is a powerful
pattern-matching tool.

 Any regular expression can be automatically
compiled into an NFA, to a DFA, and to a unique
minimum-state DFA.

 An FSA can use any set of symbols for its
alphabet, including letters and words.

